Waters™

Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Accordance With EPA 1633 Part 2: Analysis of Aqueous Matrices

Kari L. Organtini, Kenneth J. Rosnack, Chelsea Plummer, Peter Hancock, Oliver Burt

Waters Corporation

Abstract

US EPA Method 1633 has become the foundation method for analysis of PFAS in non-potable water matrices, soils, biosolids and tissues in the United States. The method consists of sample preparation using weak anion exchange (WAX) solid phase extraction (SPE) with graphitized carbon black (GCB) clean up. This application note is the second in a series demonstrating a comprehensive solution for performing the EPA 1633 methodology. The focus of this note is preparation and analysis of authentic water samples utilizing Oasis WAX/GCB for PFAS analysis and LC-MS/MS method on an ACQUITY™ Premier BSM FTN LC System coupled to a Xevo™ TQ Absolute Tandem Quadrupole Mass Spectrometer.

Benefits

- An end-to-end workflow is presented for PFAS analysis in authentic water samples following the EPA 1633 procedure
- Performance criteria of EPA 1633 are met using only 250 mL water sample providing reduced requirements for sample collection, shipment, and storage as well as reduced sample preparation time
- · Oasis WAX/GCB for PFAS Analysis, a bilayer, dual-phase SPE cartridge was utilized to reduce the debris and

hazards of working with dispersive GCB as well as further reducing sample preparation time

Performance of the workflow is demonstrated by easily passing qualifications of a Waters™ ERA certified
 reference material

Introduction

US EPA Method 1633 was first introduced in August 2021 to become the foundational method for analysis of PFAS in non-potable water matrices, soils, biosolids, and tissues. At the time of writing this document, Method 1633 is in the 4th Draft Phase with the final version expected to be released at the end of 2023. By the final release of EPA 1633, it will have been multi-lab validated for each type of sample matrix included in the method. The method covers 40 PFAS and utilizes isotope dilution calibration and quantitation. Required sample preparation differs slightly depending on sample type, but all sample types utilize SPE on a WAX cartridge in combination with GCB clean up. EPA 1633 was created to support sample analysis for the Clean Water Act (CWA) and Department of Defense (DoD) monitoring and remediation, but it covers such a wide range of matrices and compounds that its applicability is expected to be widespread.

This is the second in a series of application notes addressing sample preparation, analysis and method performance of EPA 1633 using a comprehensive workflow of Waters technologies. This application note will focus on the preparation of authentic water samples with analysis utilizing the LC-MS/MS method established in Part 1 on an ACQUITY Premier BSM FTN UPLC System coupled to a Xevo TQ Absolute Mass Spectrometer.³ The use of a combined WAX and GCB sample extraction and clean-up workflow is demonstrated on ground water, surface water, and wastewater (influent and effluent).

Experimental

Sample Preparation

Samples discussed in this application note include ground water and surface water that were collected locally, and influent and effluent wastewater that were kindly provided by a municipal wastewater treatment facility in the Midwest United States. All water samples were collected using grab sampling directly into 250 mL high

density polypropylene bottles. Samples were frozen until sample analysis according to EPA 1633 guidelines and holding times. Sample bottles were weighed prior to sample preparation (full) and after sample preparation (empty) to determine the exact volume collected in each bottle. In addition to authentic samples, the Waters ERA PFAS in Wastewater (Item No. 404 https://www.eraqc.com/pfas-in-wastewater-wp-era001663?returnurl=%2fpfas-products%2f) certified reference material (CRM) was processed with the samples.

Oasis WAX/GCB for PFAS Analysis, a bilayer, dual-phase SPE cartridge (p/n: 186011110) containing both Weak Anion Exchange (WAX) and Graphitized Carbon Black (GCB) sorbents was used for sample preparation instead of adding dispersive GCB into the sample for cleanup.

Full sample preparation details are listed in Figure 1 and are adapted directly from the EPA 1633 method. Two changes to the method were made including a sample volume change and combining the dispersive GCB step into the SPE cartridge, as described previously. Sample volume was reduced to 250 mL from the suggested 500 mL sample in the method due to instrument sensitivity of the Xevo TQ Absolute Mass Spectrometer. Reducing sample volume reduces sample shipping and storage costs, as well as allowing for faster sample preparation when loading half the volume of sample onto an SPE cartridge. Combining the GCB and WAX into the same cartridge provides the convenience of minimizing complications from using loose material and reducing the number of steps during sample preparation without compromising the method.

Spike 250 mL water sample with Extracted Internal Standard Mix (MPFAC-HIF-ES from Wellington) Check pH and adjust to approximately 6 if necessary Pack SPE cartridge with glass wool to half height of barrel Condition SPE cartridges 2. • 15 mL 1% (v/v) ammonium hydroxide in methanol • 5 mL 0.3 M formic acid Load sample at 5 mL/min • Wash cartridge with 10 mL of reagent water, ensuring to rinse reservoir with this solution 3. • Wash with 5 mL of 1:1 0.1M formic acid:methanol, ensuring to rinse reservoir with this solution · Dry cartridge for 15 seconds · Place collection tubes in manifold • Rinse bottle with 5 mL 1% (v/v) ammonium hydroxide in methanol. Transfer to cartridge and elute 4. Add 25 µL acetic acid to each sample · Spike each sample with Non Extracted Internal Standard (MPFAC-HIF-IS from Wellington)

Figure 1. Full method details of the sample preparation process used for all water samples. Adapted from EPA Method 1633.

All samples were spiked with 5 ng/L (sample concentration equivalent) of the required extracted internal standard (EIS) prior to extraction and 5 ng/L (sample concentration equivalent) of the required non-extracted internal standard (NIS) after extraction. The calibration curve range for each analyte is listed in Appendix Table 2 and was determined from the data acquired and presented in Part 1 of this application note series.³ All standards were obtained as mixes from Wellington Laboratories.

LC Conditions

LC system:	ACQUITY Premier BSM with FTN
Vials:	700 µL Polypropylene Screw Cap Vials (p/n: 186005219)
Analytical column:	ACQUITY Premier BEH™ C ₁₈ 2.1 x 50 mm, 1.7 μm

(p/n: 186009452)

Isolator column: Atlantis™ Premier BEH C₁₈ AX 2.1 x 50 mm, 5.0 μm

(p/n: 186009407)

Column temperature: 35 °C

Sample temperature: 10 $^{\circ}$ C

PFAS kit: PFAS Install Kit with OASIS WAX 150 mg (p/n:

176004548)

Injection volume: 2 µL

Flow rate: 0.3 mL/min

Mobile phase A: 2 mM ammonium acetate in water

Mobile phase B: 2 mM ammonium acetate in acetonitrile

Gradient Table

Time (min)	%A	%B	Curve
0	95	5	initial
0.5	75	25	6
3	50	50	6
6.5	15	85	6
7	5	95	6
8.5	5	95	6
9	95	5	6
11	95	5	6

MS Conditions

MS system: Xevo TQ Absolute Ionization mode: ESI-Capillary voltage: 0.5 kV 100 °C Source temperature: Desolvation temperature: 350 °C Desolvation flow: 900 L/hr Cone flow: 150 L/hr MRM method: See Appendix for Full MRM Method details Data Management Software: waters_connect[™] for Quantitation

Results and Discussion

Recovery in Water Samples

EPA 1633 is a performance-based method that allows modifications as long as the performance criteria outlined in the method are all met. One major modification presented in this work is to use a bilayer dual-phase SPE cartridge that combines the otherwise dispersive GCB clean up step into the WAX SPE cartridge. GCB is difficult to work with and accurately measure, therefore utilizing a bilayer cartridge eliminates the untidy dispersive step. More importantly, combining the GCB cleanup step into the SPE extraction saves valuable time in the laboratory

during the sample preparation process. Additionally, less preparation steps allow for fewer opportunities for introduction of unintended PFAS sample contamination.

One of the important performance criteria that must be established in order to prove equivalence of this approach is the extracted internal standard (EIS) and non-extracted internal standard (NIS) recovery acceptance limits in the 4th Draft Method 1633 (See Table 6 within that document).¹ The individual recovery performance of the bilayer dual-phase SPE cartridge for ground water, surface water (with high organic matter content), influent wastewater (settled only), and effluent wastewater (fully treated discharge water) are listed for each EIS and NIS in Table 1. The data reported in Table 1 is the average recovery and %RSD for five replicate extractions of each matrix type. The mean recovery of all EIS among the 20 samples extracted was 91.2% with a mean RSD of 9.2%.

	Ground water		Surface	Surface water		Influent water		Effluent water	
Compound	Average recovery (%)	%RSD	Average recovery (%)	%RSD	Average recovery (%)	%RSD	Average recovery (%)	%RSD	
¹³C₄-PFBA	100.0	2.7	111.9	8.1	85.8	9.2	86.6	13.8	
¹³C₅-PFPeA	98.6	4.2	110.1	8.5	101.6	5.7	100.3	15.1	
¹³C₅-PFHxA	97.2	3.1	111.2	8.0	111.0	8.4	102.5	14.3	
¹³C₄-PFHpA	97.3	4.5	108.8	9.2	111.0	8.5	99.7	14.8	
13C ₈ -PFOA	98.8	2.5	110.6	9.0	113.0	13.3	100.7	16.5	
13C ₉ -PFNA	96.6	5.2	110.2	11.3	112.0	18.0	101.1	17.5	
13C ₆ -PFDA	92.1	2.9	108.1	9.5	103.8	18.1	97.0	17.5	
¹³ C ₇ -PFUnDA	88.5	2.9	102.0	4.8	93.0	18.7	91.6	15.0	
¹³ C-PFDoDA	83.1	2.8	89.8	8.5	63.8	18.2	82.5	14.0	
¹³ C ₂ -PFTreDA	72.5	5.0	56.7	10.1	32.3	17.6	52.5	13.4	
¹³C₃-PFBS	97.8	2.3	110.9	6.5	116.8	12.3	102.6	13.5	
¹³C₃-PFHxS	97.0	5.0	113.1	6.9	112.5	8.3	104.8	14.5	
13C ₈ -PFOS	93.2	1.8	108.7	7.8	108.5	13.9	97.8	17.3	
¹³ C ₂ -4:2 FTS	82.8	6.9	92.1	5.1	179.8	9.1	102.8	21.4	
¹³ C ₂ -6:2 FTS	94.1	2.8	95.0	5.0	197.8	11.0	101.9	19.1	
¹³ C ₂ -8:2 FTS	91.5	4.2	91.8	7.5	149.7	16.6	90.4	17.9	
13C ₈ -FOSA	92.3	3.6	99.4	5.8	101.3	19.8	96.7	18.7	
¹³C₃-GenX	98.0	3.5	105.9	6.6	85.2	7.5	98.6	14.8	
D₅-N-EtFOSAA	91.3	3.4	91.9	6.0	127.0	15.4	93.3	18.3	
D ₃ -N-MeFOSAA	89.0	4.8	90.3	5.5	137.4	16.2	91.6	20.3	
d₃NMeFOSA	63.5	5.9	64.0	13.2	52.8	24.3	82.3	19.2	
d₅NEtFOSA	61.1	7.0	61.9	13.5	38.9	23.8	78.5	19.6	
d7-NMeFOSE	70.0	5.7	74.0	11.8	56.9	20.3	74.5	17.7	
d9-NEtFOSE	67.2	5.9	71.1	12.3	52.9	20.2	71.1	18.3	
¹³C₃-PFBA	134.8	20.0	112.2	6.5	89.6	6.6	114.1	7.1	
¹³C₂-PFHxA	133.9	19.4	117.4	5.7	120.8	7.2	124.7	5.8	
¹³C₄-PFOA	127.9	22.7	116.3	7.8	132.2	8.1	123.5	8.0	
¹³C₅-PFNA	133.3	21.3	115.1	9.1	132.8	4.5	122.3	7.5	
¹³C₂-PFDA	136.8	20.3	115.8	6.3	155.9	4.0	124.4	7.7	
¹⁸ O ₂ -PFHxS	133.6	21.4	115.7	7.4	112.2	7.0	119.8	6.6	
¹³C₄-PFOS	132.2	22.7	116.1	6.6	118.9	7.2	121.6	8.2	

Table 1. Average recovery of the extracted internal standards (EIS) and non-extracted internal standards (NIS) using the bilayer dual-phase SPE cartridge for each water sample type evaluated (n=5).

Figure 2 directly compares the average recovery across all water sample types with the allowable recoveries in EPA 1633 Table 6 (Draft 4). The recoveries in water samples were easily within the recovery acceptance limits for each compound, and in all cases were significantly above the minimum recovery level. This demonstrates that even in the more complex water matrices, the cartridge has equivalent performance as using dispersive GCB and is fit-for-purpose.

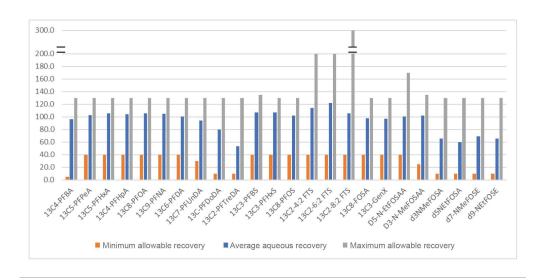


Figure 2. Average recovery of the extracted internal standards (EIS) in all four aqueous sample types (blue) compared to the minimum (orange) and maximum (gray) percent recoveries allowed in the EPA 1633 method (n=20). Note the split axis to accommodate the maximum recovery value for $^{13}C_2$ -8:2 FTS.

Analysis of a Certified Reference Material

Accuracy of analysis is important for quantitating PFAS in customer samples. A certified reference material (CRM) from Waters ERA was processed with the authentic samples as a benchmark for workflow accuracy. The PFAS in Wastewater CRM is certified for all EPA 1633 analytes, giving a representative reference material for method performance without having to spike unknown matrix samples which can become complicated without a sample free from PFAS. Figure 3 shows the average quantitative results for three replicate extraction and analyses of the Wastewater CRM. The dotted and dashed red lines indicate the minimum and maximum certified value range of the CRM. The solid blue line represents the certified value. The solid gray line represents the average experimental quantitated value determined during sample analysis. All 40 target PFAS in EPA 1633 were quantified within the allowable minimum and maximum concentration range with a mean trueness of 92% and trueness range of 73–112%. This demonstrates confidence in accuracy of the sample preparation, analysis and data processing workflow using Waters solutions.

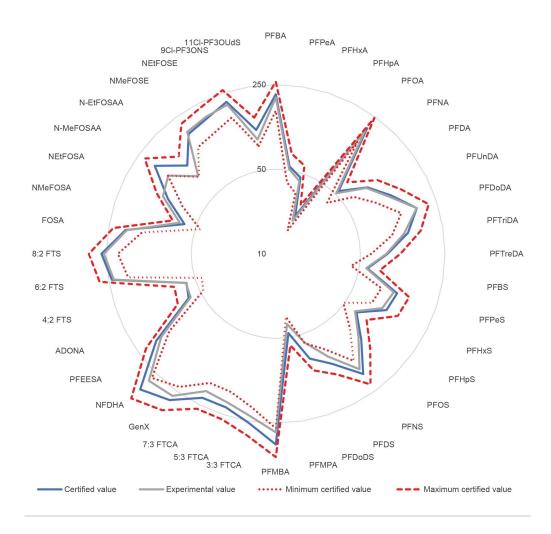


Figure 3. Quantified values of all 40 EPA 1633 target analytes in Waters ERA PFAS in Wastewater CRM. Red lines represent the minimum (dotted) and maximum (dash) certified value range of the CRM. The blue line represents the certified value. The solid gray line represents the average experimental quantitated value (n=3). Note the axis is represented using a log scale.

Analysis of PFAS in Authentic Water Samples

The presented workflow was utilized to detect and quantify the 40 target PFAS analytes in ground water, surface water, influent water, and effluent water. The LC gradient method was designed to provide a minimum of 1 minute separation between potential cholic acid interferences and PFOS.² Because cholic acids are produced to aid digestion, they can be present in large amounts in wastewater samples. Figure 3 demonstrates the presence

of cholic acids in the influent and effluent wastewater samples and the successful separation of them from interference with PFOS.

PFAS were detected in all samples, as highlighted in Table 2. Each sample was collected and extracted in five replicates and the average calculated concentration is reported with associated %RSDs for the replicates. The ground water had the lowest detectable PFAS with nine PFAS detected above the limit of quantitation (LOQ) and ranging from 0.11–7.03 ng/L. The surface water sample had a slightly larger range of PFAS, with 12 detected above the LOQ in a range of 0.17–15.4 ng/L. The wastewater samples had the largest range and concentrations of PFAS detected. A comparison of the detected PFAS in the influent and effluent water is shown in Figure 5. 19 PFAS were quantified in the influent wastewater, whereas 16 were detected in the effluent wastewater, indicating that the water treatment at this site is effective at removing some PFAS. When comparing the concentrations though, most of the PFAS were quantified at approximately the same concentration in both influent and effluent water. NMeFOSE, 3:3 FTCA, and 7:3 FTCA were not present in the effluent water discharged from the treatment plant, and 5:3 FTCA was significantly reduced (from 88.9 ng/L in the influent to 3.9 ng/L in the effluent).

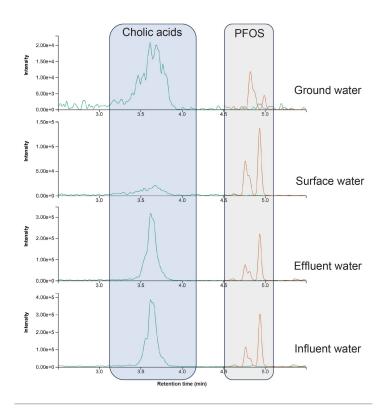


Figure 4. Overlay chromatograms of cholic acids and PFOS MRM channels demonstrating the large cholic acid interference present in wastewater samples.

	Ground water		Surface water		Influent waste	ewater	Effluent waste	water
Analyte name	Concentration (ng/L)	%RSD	Concentration (ng/L)	%RSD	Concentration (ng/L)	%RSD	Concentration (ng/L)	%RSD
PFBA	7.03	3.0	15.36	8.4	21.93	18.3	21.15	7.7
PFPeA	2.47	2.5	4.30	3.7	11.55	15.5	12.12	3.7
PFHxA	1.67	3.0	3.53	2.7	15.98	17.4	23.81	1.7
PFHpA	1.01	8.0	2.12	5.9	3.33	13.4	3.33	1.6
PFOA	0.69	10.0	4.86	6.7	27.02	14.5	14.89	8.5
PFNA	N.D.	-	0.77	15.0	0.91	11.4	1.28	20.2
PFDA	N.D.	-	0.51	32.1	0.95	4.6	2.44	20.7
PFUnDA	N.D.	-	N.D.	-	N.D.	-	N.D.	-
PFDoDA	N.D.	-	N.D.	-	BLoQ	-	N.D.	-
PFTriDA	N.D.	-	N.D.	-	N.D.	-	N.D.	-
PFTreDA	N.D.	-	N.D.	-	N.D.	-	N.D.	-
PFBS	1.05	7.1	2.83	6.0	41.12	12.6	38.16	3.9
PFPeS	0.11	8.7	0.17	11.8	0.39	23.7	0.34	6.2
PFHxS	0.26	10.3	0.86	5.6	4.72	17.7	4.07	3.5
PFHpS	N.D.	-	N.D.	-	N.D.	-	BLoQ	-
PFOS	0.34	16.4	3.40	22.4	8.17	9.4	6.17	19.9
PFNS	N.D.	-	N.D.	-	N.D.	-	N.D.	_
PFDS	N.D.	-	N.D.	-	N.D.	-	N.D.	-
PFDoDS	N.D.	-	N.D.	-	N.D.	-	N.D.	-
GenX	N.D.	-	0.12	8.8	0.65	15.2	0.59	5.4
ADONA	N.D.	-	N.D.	-	N.D.	-	N.D.	-
9CIPF3ONS	N.D.	-	N.D.	-	N.D.	-	N.D.	-
11CIPF3OUdS	N.D.	-	N.D.	-	N.D.	-	N.D.	-
4_2 FTS	N.D.	-	N.D.	-	N.D.	-	N.D.	-
6_2 FTS	N.D.	-	N.D.	-	4.44	16.2	2.91	18.9
8_2 FTS	N.D.	-	N.D.	-	N.D.	-	N.D.	-
FOSA	BLoQ	-	BLoQ	-	BLoQ	-	BLoQ	-
NMeFOSA	N.D.	-	N.D.	-	N.D.	-	N.D.	-
NEtFOSA	N.D.	-	N.D.	-	N.D.	-	N.D.	-
NMeFOSAA	N.D.	-	N.D.	-	1.16	10.7	1.26	28.1
NEtFOSAA	N.D.	-	N.D.	-	0.90	14.6	0.90	27.6
NMeFOSE	N.D.	-	N.D.	-	2.96	9.8	BLoQ	-
NEtFOSE	N.D.	-	N.D.	-	N.D.	-	N.D.	_
3:3 FTCA	N.D.	-	N.D.	-	4.91	21.4	N.D.	-
5:3 FTCA	N.D.	-	N.D.	-	88.91	18.4	3.91	4.3
7:3 FTCA	N.D.	-	N.D.	-	4.66	16.8	N.D.	-
PFMPA	N.D.	-	N.D.	-	N.D.	-	N.D.	_
PFMBA	N.D.	_	N.D.	-	N.D.	-	N.D.	_
PFEESA	N.D.	-	N.D.	-	N.D.	_	N.D.	_
NFDHA	N.D.	-	N.D.	_	N.D.	_	N.D.	_

Table 2. Detected concentrations of PFAS in each type of water sample and associated % RSD of n=5 replicates. (N.D.) not detected. (BLoQ) below limit of quantitation.

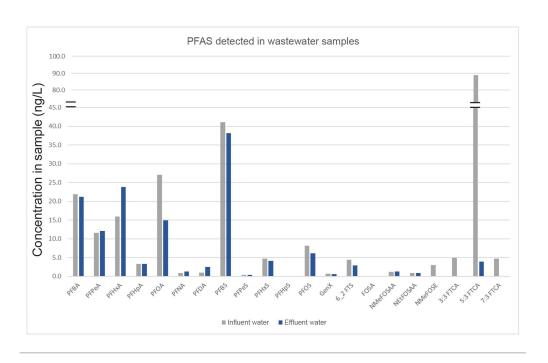


Figure 5. Comparison of the quantified PFAS in influent wastewater (gray) and effluent wastewater (blue). Note the split axis to accommodate the maximum concentration value for 5:3 FTCA.

Conclusion

Sample preparation and analysis was performed for several water samples using EPA 1633 procedures. Oasis WAX/GCB for PFAS Analysis, a bilayer, dual-phase SPE cartridge containing both WAX and GCB was utilized for the sample extraction and clean up in place of performing the extraction and clean up in two separate steps with dispersive GCB. This cartridge provides a better user experience and reduces time spent in the sample preparation step. All recoveries were within the acceptance criteria ranges with the mean EIS recovery of 20 extractions (including ground water, surface water, influent water, and effluent water) at 91.2%, with a mean RSD of 9.2%. This demonstrates the equivalence of the bilayer dual-phase SPE cartridge as a suitable single step replacement for the multi-step extraction and clean up presented in EPA 1633. Additionally, a Waters ERA wastewater certified reference material processed and analyzed using the same method was easily within the certified reference value range, giving high confidence in method accuracy. Four types of water samples, varying

in complexity, were analyzed for the 40 PFAS included in EPA 1633 and PFAS were detected in all samples ranging from 0.1 to 88.9 ng/L. The data presented demonstrates that the bilayer dual-phase SPE cartridge in combination with the LC-MS/MS system easily fulfills all requirements for analysis of water samples for EPA 1633.

References

- 1. US Environmental Protection Agency. Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS, Draft 4. July 2023.
- 2. US Environmental Protection Agency. Clean Water Act Analytical Methods: CWA Analytical Methods for Perand Polyfluorinated Alkyl Substances (PFAS). https://www.epa.gov/cwa-methods/cwa-analytical-methods-and-polyfluorinated-alkyl-substances-pfas#draft-method-1633 < https://www.epa.gov/cwa-methods/cwa-analytical-methods-and-polyfluorinated-alkyl-substances-pfas#draft-method-1633> , Accessed 17 November 2023.
- 3. K Organtini, K Rosnack, P Hancock. Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Accordance with EPA 1633 Part 1: Establishing and Assessing the Method. Waters Application Note. 720008117. 2023.

Appendix

PFBA 213.0 169 10 10 No No 16C₂ -PFBA - PFPeA 262.9 219 10 5 No 19C₂ -PFPA - PFHXA 312.9 119 5 20 No 13C₂ -PFHXA - PFHAA 312.9 119 5 20 No 13C₂ -PFHXA - PFHAA 312.9 119 5 20 No 13C₂ -PFHXA - PFHAA 362.9 119 15 15 No 13C₂ -PFHAA - PFDA 412.9 369 10 10 No 13C₂ -PFHAA - PFNA 462.9 419 10 15 No 13C₂ -PFHAA - PFDA 512.9 468.9 15 9 No 13C₂ -PFHAA - PFUNDA 562.9 219 15 15 No 13C₂ -PFDA - PFDADA 612.9 518.9 2	Compound	Parent	Fragment	cv	CE	Soft	Internal	Type of internal	
PFPEA	and the second	Farent	Fragilient	CV	CE	transmission		standard	
PFHKA 312.9 229 5 10 No "C ₂ -PFHKA -	PFBA	213.0	169	10	10	No	13C ₃ -PFBA	-	
PFHXA 312.9	PFPeA	262.9	219	10		No	¹³C₅-PFPeA	-	
PFHpA 362.9 169 15 10 No 10 No 169 PFHpA - PFOA 412.9 169 10 15 No 10 No 169 PFOA - PFOA 412.9 169 10 15 No 10 No No No No No No No N	PEHyA	312 9	269	5	10	No	¹³C -PEHy∆	_	
PFHPA 362.9 169 15 15 15 No "C _x -PFHPA - 100 No "C _x -PFDA - 100 No "C _x -PFTreDA - 100 No "C _x -PFTRA - 100	111177	OILIO	119	5	20	140	5 111127		
PFOA 412.9 169 10 10 10 10 10 10 10 1	PEHn∆	362 9	319	15	10	No	¹3C -PEHn∆	_	
PFDA 412.9 1199 110 115 No "G ₄ *PFDA - 1219 110 110 No "G ₄ *PFDA - 1219 110 115 No "G ₄ *PFDA - 1219 110 115 No "G ₄ *PFDA - 1219 No "G ₄ *PFDDA - 1219 No "G ₄ *PFDA - 1219 No "G ₄	ттірл	002.0	169	15	15	140	0 ₄ -1 1 11px		
PFNA	PEOA	412 9	369	10	10	No	¹3C -PEO∆	_	
PFNA 462.9 219 10 15 No "C _c -PFNA - 468.9 15 9 No "C _c -PFDA - 219 15 15 15 15 No "C _c -PFDA - 219 15 15 15 15 No "C _c -PFDA - 219 15 15 15 15 No "C _c -PFDA - 219 15 15 15 No "C _c -PFDA - 269 25 20 No "C _c -PFDDA - 269 25 20 No "C _c -PFDDA - 268.9 30 10 No "C _c -PFDDA - 268.9 169 30 25 No "C _c -PFDDA - 268.9 10 25 No "C _c -PFDA - 268.9 10 30 No "C _c -PFDA - 268.0 15 35 No "C _c -PFDA - 268.0 15 No "C _c -PFDA - 269.0	110/	712.5	169	10	15	140	81107		
PFDA 512.9 468.9 15 9 No "C _{g*} PFDA - PFUNDA 562.9 219 15 15 15 PFUNDA 562.9 269 25 20 No "C _{g*} PFDA - PFDODA 612.9 169 30 10 No "C _{g*} PFDODA - PFTriDA 662.9 169 30 10 No "C _{g*} PFDODA - PFTriDA 662.9 169 5 30 No "C _{g*} PFTDA - PFTriDA 712.9 668.9 10 25 No "C _{g*} PFTDA - PFTRDA 712.9 668.9 10 25 No "C _{g*} PFTDA - PFBS 298.9 91 15 30 No "C _{g*} PFTDA - PFBS 298.9 99.1 15 30 No "C _{g*} PFTDA - PFPS 348.9 99.9 10 30 No "C _{g*} PFTRS - PFHXS 398.9 99.1 10 30 No "C _{g*} PFTXS - PFDS 448.9 99.1 15 35 No "C _{g*} PFDS - PFDS 498.9 99.1 15 35 No "C _{g*} PFDS - PFDS 548.9 99.1 15 40 No "C _{g*} PFDS - PFDS 598.9 80.1 46 46 No "C _{g*} PFDS - PFDS 598.9 180 40 55 No "C _{g*} PFDS - PFDDDS 699.1 99 40 55 No "C _{g*} PFDS - PFDDDS 699.1 99 40 55 No "C _{g*} PFDO - PFDS 598.9 30 40 55 No "C _{g*} PFDO - PFDS 598.9 350.9 15 25 No "C _{g*} PFDO - PFDS 428.0 169 5 7 Yes "C _{g*} PFDO - PFDS 530.9 350.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 548.9 369.9 15 25 No "C _{g*} PFDO - PFDS 550.9 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFDO - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 560.8 15 25 No "C _{g*} PFOS - PFDS 660.9 168.9 15 1	DENIA	462 9	419	10	10	No	¹3C -PENA	_	
PFUNDA 512.9 219 115 115 NO "C_c, PFUNDA - 1518.9 25 10. NO "C_c, PFUNDA - 1518.9 25 10. NO "C_c, PFUNDA - 169 30. 25 NO "C_c, PFUNDA - 169 30. 25 NO "C_c, PFUNDA - 169 169 30. 25 NO "C_c, PFUNDA - 169 169 10. 15 NO "C_c, PFTNEDA - 169 10. 16	TTNA	402.3	219	10	15	140	O ₉ -1111A		
PFUNDA 562.9 518.9 25 10 No "C, PFUNDA - 568.9 30 10 169 30 25 10 No "C, PFUNDA - 568.9 30 10 169 30 25 10 No "C, PFDODA - 169 5 30 No "C, PFDODA - 169 10 15 No "C, PFRDA - 169 10 10 15 No "C, PFRDA - 169 10 10 10 10 10 No "C, PFRDA - 169 10 10 10 10 No "C, PFRDA - 169 10 10 No "C, PFRDA - 169 10 10 No "C, PFRDA - 169 10 No "C, PFR	PEDA	512 9	468.9	15	9	No	¹³C -PED∆	_	
PFUNDA 562-9	TTDA	012.0	219	15	15	140	0 ₆ -11-DA		
PFDoDA 612.9	PELINDA	562 9	518.9	25	10	No	13C -PEUnDA	_	
PFIDDA 662.9	TT ONDA	002.0	269	25	20	140	0,11011071		
PFTriDA	PEDoDA	612.9	568.9	30	10	No	¹3C-PEDoDA	_	
PFIRIDA 662.9 169	FIDODA	012.3	169	30	25	140	C-FT DODA		
PFTreDA 712.9	DETriDA	662.0	618.9	5	10	No	¹³ C-PFDoDA +		
PFTREDA 712.9 169 10 15 No "C ₂ -PFTREDA - PFBS 298.9 80.1 15 30 No "C ₃ -PFBS - PFPeS 348.9 98.9 10 30 No "C ₃ -PFHxS - PFHxS 398.9 10 30 No "C ₃ -PFHxS - PFHxS 398.9 80.1 10 30 No "C ₃ -PFHxS - PFHxS 398.9 99.1 10 30 No "C ₃ -PFHxS - PFHpS 448.9 99.1 15 35 No "C ₃ -PF0S - PFOS 498.9 99.1 15 40 No "C ₄ -PFOS - PFNS 548.9 99.1 15 40 No "C ₅ -PFOS - PFDS 598.9 99.1 20 40 No "C ₆ -PFOS - PFDS 598.9 99.1 46 46 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 40 55 No "C ₆ -PFOS - PFDDS 699.1 80 No "C ₆ -PFOS - PFDDS 799.1 15 25 No "C ₆ -PFOS - PFDDS 899.1 15 15 No "C ₆ -PFOS - PFDDS 899.1 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 15 15 No "C ₆ -PFOS - PFDS 899.1 15 1	FITTIDA	002.9	169	5	30	140	13C ₂ -PFTreDA	_	
PFBS 298.9	DETDA	710.0	668.9	10	25	NI-	13C DET DA		
PFBS 298.9 99.1 15 30 No "C ₅ -PFBS - PFPeS 348.9 79.9 10 30 No "C ₅ -PFHxS - PFHxS 398.9 80.1 10 35 No "C ₅ -PFHxS - PFHpS 448.9 99.1 15 35 No "C ₅ -PFOS - PFOS 498.9 99.1 15 35 No "C ₆ -PFOS - PFNS 548.9 99.1 15 40 No "C ₆ -PFOS - PFDS 598.9 80.1 46 46 No "C ₆ -PFOS - PFDoDS 699.1 80 46 46 No "C ₆ -PFOS - PFDoDS 699.1 99 40 55 No "C ₆ -PFOS - QCIPGODA 285.0 169 5 7 Yes "C ₃ -HFPO-DA - ADONA 376.9 350.9 15	PFITEDA	712.9	169	10	15	INO	™C₂-PFTFEDA	-	
PFPES 348.9 99.1 15 30 No "C ₂ -PFHXS - 98.9 10 30 No "C ₃ -PFHXS - 99.1 10 30 No "C ₃ -PFHXS - 99.1 10 30 No "C ₃ -PFHXS - 99.1 10 30 No "C ₃ -PFOS - 99.1 15 35 No "C ₃ -PFOS - 99.1 15 35 No "C ₃ -PFOS - 99.1 15 40 No "C ₃ -PFOS - 99.1 20 40 No "C ₃ -PFOS - 99.1 46 46 No "C ₃ -PFOS - 99.1 16 No "C ₃ -PFO-DA -	DEDC	000.0	80.1	15	30	NI-	130 DEDC		
PFPeS 348.9 98.9 10 30 No "C ₂ -PFHxS - PFHxS 398.9 99.1 10 35 No "C ₂ -PFHxS - PFHpS 448.9 99.1 15 35 No "C ₂ -PFOS - PFOS 498.9 99.1 15 40 No "C ₂ -PFOS - PFNS 548.9 99.1 15 40 No "C ₂ -PFOS - PFDS 598.9 80.1 20 40 No "C ₂ -PFOS - PFDS 598.9 80.1 46 46 No "C ₂ -PFOS - PFDDS 699.1 80 40 55 No "C ₂ -PFOS - PFDoDS 699.1 80 40 55 No "C ₂ -PFOS - PFDoDS 699.1 10 55 No "C ₃ -HFPO-DA - ADONA 376.9 251 10 10 <td< td=""><td>PFB2</td><td>298.9</td><td>99.1</td><td>15</td><td>30</td><td>No</td><td>"C3-PERS</td><td>-</td></td<>	PFB2	298.9	99.1	15	30	No	"C3-PERS	-	
PFHxS 398.9 80.1 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 3			79.9	10	30				
PFHXS 398.9 99.1 10 30 No MC_2-PFHXS - PFHpS 448.9 80.1 15 35 No 13C_8-PFOS - PFOS 498.9 80.1 15 40 No 13C_8-PFOS - PFNS 548.9 80.1 20 40 No 13C_8-PFOS - PFDS 598.9 80.1 46 46 46 No 13C_8-PFOS - PFDODS 699.1 80 40 55 No 13C_8-PFOS - PFDoDS 699.1 160 57 Yes 12C_3-HFPO-DA - ADONA 376.9 377.3 10 <	PFPeS	348.9	98.9	10	30	No	13C ₃ -PFHXS	-	
PFHpS 448.9 99.1 10 30 PFOS 498.9 80.1 15 35 No "C _a *PFOS - PFOS 498.9 80.1 15 40 No "C _a *PFOS - PFNS 548.9 99.1 20 40 No "C _a *PFOS - PFDS 598.9 80.1 46 46 No "C _a *PFOS - PFDoDS 699.1 80 40 55 No "C _a *PFOS - PFDoDS 699.1 80 40 55 No "C _a *PFOS - GenX (HFPO-DA) 285.0 169 5 7 Yes "C _a *PFOS - ADONA 376.9 251 10 10 No "C _a *HFPO-DA - 9CI-PF3ONS 530.9 15 25 No "C _a *HFPO-DA - 9CI-PF3ONS 530.9 15 25 No "C _a *HFPO-DA -			80.1	10	35				
PFHPS	PFHxS	398.9	99.1	10	30	No	¹³C₃-PFHxS	-	
PFHPS									
PFOS 498.9 80.1 15 40 No ¹³C₀*PFOS - PFNS 548.9 99.1 15 40 No ¹³C₀*PFOS - PFDS 598.9 80.1 20 40 No ¹³C₀*PFOS - PFDoDS 699.1 99.1 46 46 No ¹³C₀*PFOS - PFDoDS 699.1 99 40 55 No ¹³C₀*PFOS - PFDoDS 699.1 99 40 55 No ¹³C₀*PFOS - GenX (HFPO-DA) 285.0 169 5 7 Yes ¹³C₀*HFPO-DA - ADONA 376.9 251 10 10 No ¹³C₃*HFPO-DA - 9CI-PF3ONS 530.9 350.9 15 25 No ¹³C₃*HFPO-DA - 11CI-PF3OUdS 630.9 306.9 15 15 No ¹³C₃*HFPO-DA - 4:2 FTS 326.9 327.3	PFHpS	448.9				No	13C ₈ -PFOS	-	
PFOS 498.9 99.1 15 40 No \$^{15}C_{6}\$-PFOS - PFNS 548.9 80.1 20 40 No \$^{13}C_{6}\$-PFOS - PFDS 598.9 80.1 46 46 No \$^{13}C_{6}\$-PFOS - PFDoDS 699.1 80 40 65 No \$^{12}C_{8}\$-PFOS - GenX (HFPO-DA) 285.0 169 5 7 Yes \$^{12}C_{8}\$-PFOS - ADONA 376.9 169 5 7 Yes \$^{12}C_{8}\$-PFODA - ADONA 376.9 251 10 10 No \$^{12}C_{3}\$-HFPO-DA - 9CI-PF3ONS 530.9 350.9 15 25 No \$^{12}C_{3}\$-HFPO-DA - 9CI-PF3ONS 630.9 450.9 30 30 No \$^{12}C_{3}\$-HFPO-DA - 11CI-PF3OUdS 630.9 30.0 30 No \$^{12}C_{3}\$-HFPO-DA - 4					-				
PFNS 548.9 80.1 20 40 No ¹³C₀, PFOS - PFDS 598.9 80.1 46 46 No ¹³C₀, PFOS - PFDoDS 699.1 80 40 55 No ¹³C₀, PFOS - PFDoDS 699.1 80 40 55 No ¹³C₀, PFOS - GenX (HFPO-DA) 285.0 169 5 7 Yes ¹³C₀, HFPO-DA - ADONA 376.9 377.3 10 25 No ¹³C₃, HFPO-DA - 9CI-PF3ONS 530.9 350.9 15 25 No ¹³C₃, HFPO-DA - 9CI-PF3OUS 630.9 15 25 No ¹³C₃, HFPO-DA - 11CI-PF3OUdS 630.9 450.9 30 30 No ¹³C₃, HFPO-DA - 4:2 FTS 326.9 15 15 No ¹³C₂, HFPO-DA - 6:2 FTS 426.9 407 10	PFOS	498.9	1			No	13C ₈ -PFOS	-	
PFNS 548.9 99.1 20 40 No 11 C _a -PFOS - BOL 598.9 80.1 46 46 46 No 12 C _a -PFOS - PFDODS 699.1 99 40 55 No 12 C _a -PFOS - GenX (HFPO-DA) 285.0 169 5 7 Yes 12 C _a -HFPO-DA - GenX 5 35 No 12 C _a -HFPO-DA - GenX 5 35 No 12 C _a -HFPO-DA - ADONA 376.9 251 10 10 No 12 C _a -HFPO-DA - 9CI-PF3ONS 530.9 82.9 15 25 No 12 C _a -HFPO-DA - 11CI-PF3OUdS 630.9 450.9 30 30 No 12 C _a -HFPO-DA - 4:2 FTS 326.9 306.9 15 15 No 12 C _a -HFPO-DA - 6:2 FTS 426.9 407 10 20 No 12 C _a -HFPO-DA - 8:2 FTS 526.9 506.8 15 25 No 13 C _a -6:2 FTS - 8:2 FTS 526.9 506.8 15 25 No 13 C _a -6:2 FTS - N-MeFOSA 511.9 218.9 40 30 No 12 C _a -FOSA - N-EtFOSA 525.9 168.9 5 25 No d _a NEFOSA - N-MeFOSA 584.0 418.9 35 25 No d _a -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 20 No d _a -N-EtFOSAA - 1									
PFDS 598.9	PFNS	548.9				No	13C ₈ -PFOS	-	
PFDS 598.9 99.1 46 46 46 No C ₂ -PFOS - 12 No C ₃ -PFOS - 13 No C ₃ -PFOS - 14 No		50.7.1.1.12.2				200			
PFDoDS 699.1 80 40 55 No \$^{13}C_8\$-PFOS - GenX (HFPO-DA) 285.0 169 5 7 Yes \$^{12}C_3\$-HFPO-DA - ADONA 376.9 251 10 10 No \$^{12}C_3\$-HFPO-DA - 9CI-PF3ONS 530.9 350.9 15 25 No \$^{12}C_3\$-HFPO-DA - 11CI-PF3OUdS 630.9 450.9 30 30 No \$^{12}C_3\$-HFPO-DA - 4:2 FTS 326.9 306.9 15 15 No \$^{12}C_3\$-HFPO-DA - 4:2 FTS 326.9 306.9 15 15 No \$^{12}C_3\$-HFPO-DA - 4:2 FTS 326.9 307.3 15 35 No \$^{12}C_2\$-4:2 FTS - 6:2 FTS 426.9 407 10 20 No \$^{12}C_2\$-4:2 FTS - 8:2 FTS 526.9 506.8 15 25 No \$^{12}C_2\$-8:2 FTS - <	PFDS	598.9				No	13C ₈ -PFOS	-	
PFDODS 699.1 99 40 55 No \$^{12}C_{3}\$-PFOS - GenX (HFPO-DA) 285.0 169 5 7 Yes \$^{12}C_{3}\$-HFPO-DA - ADONA 376.9 251 10 10 No \$^{12}C_{3}\$-HFPO-DA - 9CI-PF3ONS 530.9 350.9 15 25 No \$^{12}C_{3}\$-HFPO-DA - 11CI-PF3OUdS 630.9 450.9 30 30 No \$^{12}C_{3}\$-HFPO-DA - 4:2 FTS 326.9 306.9 15 15 No \$^{12}C_{2}\$-4:2 FTS - 6:2 FTS 426.9 407 10 20 No \$^{12}C_{2}\$-6:2 FTS - 8:2 FTS 526.9 506.8 15 25 No \$^{12}C_{2}\$-8:2 FTS - FOSA 497.9 78 40 30 No \$^{12}C_{2}\$-8:2 FTS - N-MeFOSA 511.9 168.9 40 30 No Mo Mo		200000000	_						
GenX (HFPO-DA) 285.0 169 (GenX) 5 (GenX) 35 (GenX) 7 (GenX) Yes ¹¹C₃⁻HFPO-DA - ADONA 376.9 251 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1	PFDoDS	699.1				No	13C ₈ -PFOS	-	
GenX (HFPO-DA) 285.0 GenX 5 35 Yes "C ₃ -HFPO-DA - ADONA 376.9 251 10 10 No "C ₃ -HFPO-DA - 9CI-PF3ONS 530.9 350.9 15 25 No "C ₃ -HFPO-DA - 11CI-PF3OUdS 630.9 450.9 30 30 No "C ₃ -HFPO-DA - 4:2 FTS 326.9 306.9 15 15 No "C ₂ -HFPO-DA - 6:2 FTS 426.9 407 10 20 No "C ₂ -HFPO-DA - 8:2 FTS 526.9 407 10 20 No "C ₂ -4:2 FTS - 8:2 FTS 526.9 506.8 15 25 No "C ₂ -6:2 FTS - 8:2 FTS 526.9 507.3 15 37 No "C ₂ -8:2 FTS - FOSA 497.9 78 40 30 No "3C ₂ -8:2 FTS - N-MeFOSA					3939				
ADONA 376.9	GenX (HFPO-DA)	285.0				Yes	¹³ C ₃ -HFPO-DA	-	
ADONA 376.9 377.3 10 25 No C ₃ -HFPO-DA - 9CI-PF3ONS 530.9 82.9 15 25 No C ₃ -HFPO-DA - 11CI-PF3OUdS 630.9 450.9 30 30 No C ₃ -HFPO-DA - 4:2 FTS 326.9 30.9 15 15 35 No C ₂ -4:2 FTS - 6:2 FTS 426.9 407 10 20 No C ₂ -6:2 FTS - 8:2 FTS 526.9 506.8 15 25 No C ₃ -C ₂ -8:2 FTS - FOSA 497.9 78 40 30 No C ₃ -C ₂ -8:2 FTS - N-MeFOSA 525.9 168.9 5 25 No d ₃ NMeFOSA - N-MeFOSAA 569.9 418.9 35 25 No d ₃ -N-MeFOSAA - N-EtFOSAA 584.0 418.9 15 20 No d ₃ -N-MeFOSAA - N-MeFOSE 616.0 59 15 15 No d ₃ -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d ₃ -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d ₃ -N-MeFOSE -					200				
9CI-PF3ONS 530.9	ADONA	376.9	-			No	¹³ C ₃ -HFPO-DA	-	
Section Sect									
11Cl-PF3OUdS	9CI-PF3ONS	530.9			00000000	No	¹³ C ₃ -HFPO-DA	_	
11Cl-PF3OUdS 630.9 631.2 30 30 No "C ₃ -HFPO-DA - 4:2 FTS 326.9 306.9 15 15 No 13C ₂ -4:2 FTS - 426.9 407 10 20 No 13C ₂ -6:2 FTS - 427.3 12 32 No 13C ₂ -8:2 FTS - 526.9 506.8 15 25 No 13C ₂ -8:2 FTS - 526.9 168.9 40 30 No 13C ₂ -8:2 FTS - 12 No 13C ₂ -8:2 FTS - 12 No 13C ₂ -8:2 FTS No No 13C ₂ -8:2 FTS No No No No 13C ₂ -8:2 FTS No									
4:2 FTS 326.9 306.9 15 15 No \$^{13}C_2-4:2 FTS\$ - 6:2 FTS 426.9 407 10 20 No \$^{12}C_2-6:2 FTS\$ - 8:2 FTS 526.9 506.8 15 25 No \$^{13}C_2-8:2 FTS\$ - FOSA 497.9 78 40 30 No \$^{13}C_2-8:2 FTS\$ - N-MeFOSA 511.9 168.9 40 30 No \$^{13}C_8-FOSA\$ - N-EtFOSA 525.9 168.9 40 30 No \$^{13}C_8-FOSA\$ - N-MeFOSAA 525.9 168.9 5 25 No \$^{13}C_8-FOSA\$ - N-MeFOSAA 525.9 168.9 5 25 No \$^{13}C_8-FOSA\$ - N-MeFOSAA 525.9 168.9 5 25 No \$^{13}C_8-FOSA\$ - N-MeFOSAA 569.9 418.9 35 25 No \$^{13}C_8-FOSA\$ - N-MeFOSE 616.0 59 15 20 No \$^{13}C_8-FOSA\$ - NO 0 0 0 0 0 0 0 NO 0 0 0 <	11CI-PF3OUdS	630.9				No	¹³ C ₃ -HFPO-DA	2	
4:2 FTS 326.9 327.3 15 35 No \$^{12}C_2-4:2 FTS\$ - 6:2 FTS 426.9 407 10 20 No \$^{12}C_2-6:2 FTS\$ - 8:2 FTS 526.9 506.8 15 25 No \$^{12}C_2-8:2 FTS\$ - FOSA 497.9 78 40 30 No \$^{13}C_6-FOSA\$ - N-MeFOSA 511.9 168.9 40 30 No d ₈ NMeFOSA\$ - N-EtFOSA 525.9 168.9 5 25 No d ₈ NEtFOSA\$ - N-MeFOSAA 569.9 418.9 35 25 No d ₃ -N-MeFOSAA\$ - N-EtFOSAA 584.0 418.9 15 20 No d ₅ -N-EtFOSAA\$ - N-MeFOSE 616.0 59 15 15 No d ₇ -NMeFOSE -					20000				
6:2 FTS	4:2 FTS	326.9	1	20000		No	¹³ C ₂ -4:2 FTS	_	
6:2 FTS 426.9 427.3 12 32 No \$^{12}C_2-6:2 FTS\$ - 8:2 FTS 526.9 506.8 15 25 No \$^{13}C_2-8:2 FTS\$ - FOSA 497.9 78 40 30 No \$^{13}C_9-FOSA\$ - N-MeFOSA 511.9 168.9 40 30 No d ₃ NMeFOSA\$ - N-EtFOSA 525.9 168.9 5 25 No d ₅ NEtFOSA\$ - N-MeFOSAA 569.9 418.9 35 25 No d ₃ -N-MeFOSAA\$ - N-EtFOSAA 584.0 418.9 15 20 No d ₅ -N-EtFOSAA\$ - N-MeFOSE 616.0 59 15 15 No d ₇ -NMeFOSE -							-		
8:2 FTS	6:2 FTS	426.9				No	¹³ C ₂ -6:2 FTS	-	
8:2F1S 526.9 527.3 15 37 No \$^{13}C_{2}-8:2F1S - FOSA 497.9 78 40 30 No \$^{13}C_{8}-FOSA - N-MeFOSA 511.9 168.9 40 30 No d ₃ NMeFOSA - N-EtFOSA 525.9 168.9 5 25 No d ₈ NEtFOSA - N-MeFOSAA 569.9 418.9 35 25 No d ₃ -N-MeFOSAA - N-EtFOSAA 584.0 418.9 15 20 No d ₅ -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d ₇ -NMeFOSE -									
FOSA 497.9 78 40 30 No \$^{13}C_8-FOSA - \$^{15}C_8 + COSA +	8:2 FTS	526.9				No	¹³ C ₂ -8:2 FTS	-	
N-MeFOSA 511.9 168.9 40 30 No d ₃ NMeFOSA - N-EtFOSA 525.9 168.9 5 25 No d ₅ NEtFOSA - N-MeFOSAA 569.9 219.1 35 20 No d ₃ -N-MeFOSAA - N-EtFOSAA 584.0 584.0 59 15 20 No d ₅ -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d ₇ -NMeFOSE -					100.000				
N-MeFOSA 511.9 218.9 40 25 No d _s NMeFOSA - N-EtFOSA 525.9 168.9 5 25 No d _s NEtFOSA - N-MeFOSAA 569.9 219.1 35 20 No d _s -N-MeFOSAA - N-EtFOSAA 584.0 525.9 15 20 No d _s -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d _s -NMeFOSE -	FUSA	497.9				No	¹³C ₈ -FOSA	-	
N-EtFOSA 525.9 168.9 5 25 No d _s NEtFOSA - N-MeFOSAA 569.9 219.1 35 20 No d _s -N-MeFOSAA - N-EtFOSAA 584.0 525.9 15 20 No d _s -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d _s -NMeFOSE -	N-MeFOSA	511.9				No	d ₂ NMeFOSA	-	
N-EtFOSA 525.9 218.9 5 25 No d ₅ NEtFOSA - N-MeFOSAA 569.9 418.9 35 25 No d ₃ -N-MeFOSAA - 219.1 35 20 No d ₃ -N-MeFOSAA - N-EtFOSAA 584.0 525.9 15 20 No d ₅ -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d ₇ -NMeFOSE -	**************************************	10000000 ACX				20.00000	3		
N-MeFOSAA 569.9 418.9 35 25 No d ₃ -N-MeFOSAA - N-EtFOSAA 584.0 525.9 15 20 No d ₅ -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d ₅ -NMeFOSE -	N-EtFOSA	525.9				No	d_NEtFOSA	_	
N-MEFOSAA 569.9 219.1 35 20 No d ₃ -N-MEFOSAA - N-EtFOSAA 584.0 525.9 15 20 No d ₅ -N-EtFOSAA - N-MEFOSE 616.0 59 15 15 No d ₇ -NMEFOSE -	5.514						6		
N-EtFOSAA 584.0 418.9 15 20 No d _s -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d _r -NMeFOSE -	N-MeFOSAA	569.9				No	dN-MeFOSAA	-	
N-EtFOSAA 584.0 525.9 15 20 No d _s -N-EtFOSAA - N-MeFOSE 616.0 59 15 15 No d _s -NMeFOSE -							3		
N-MeFOSE 616.0 59 15 15 No d ₂ -NMeFOSE -	N-EtFOSAA	584.0				No	dN-EtFOSAA	_	
		00410			20				
N-EtFOSE 630.0 59 15 15 No d ₉ -NEtFOSE -			70.000	17/0	1000			-	
	N-EtFOSE	630.0	59	15	15	No	d ₉ -NEtFOSE	-	

Compound	Parent	Fragment	cv	CE	Soft transmission	Internal standard	Type of internal standard
3:3 FTCA	241.0	116.9 176.9	5 5	40 10	No	¹³ C ₅ -PFPeA	-
		216.9	5	25			
5:3 FTCA	340.9	237	5	10	No	¹³C₅-PFHxA	-
0.0200.00		316.9	10	22			
7:3 FTCA	440.9	337	10	17	No	¹³C₅-PFHxA	-
PFMPA	228.9	84.9	23	10	No	¹³ C ₅ -PFPeA	
PFMBA	278.9	84.9	10	10	No	13C ₅ -PFHxA	
DEEEOA	014.0	82.9	15	20	NI-	•	
PFEESA	314.9	134.9	15	20	No	¹³C₅-PFHxA	-
NFDHA	295.0	84.9	5	10	No	13C ₅ -PFHxA	
NEDHA	295.0	200.9	5	10	INO	C ₅ -FFHXA	_
¹³C₄-PFBA	216.8	171.9	10	10	No	¹³ C ₃ -PFBA	Extracted IS
13C ₅ -PFPeA	267.9	223	10	5	No	13C ₂ -PFHxA	Extracted IS
13C ₅ -PFHxA	317.9	272.9	10	5	No	13C ₂ -PFHxA	Extracted IS
O ₅ -FITTA	317.5	119.9	10	20	140	O ₂ -FTTIAA	Extracted 15
¹³C₄-PFHpA	366.9	321.9	15	10	No	¹³ C ₂ -PFHxA	Extracted IS
- O ₄ -1111pA	500.5	169	15	15	140	0 ₂ -1111XX	Extracted to
13C _a -PFOA	420.9	375.9	5	15	No	13C ₄ -PFOA	Extracted IS
0,11071	12010	172	5	10	110	0411071	Extractorio
13C _o -PFNA	471.9	426.9	10	10	No	13C ₅ -PFNA	Extracted IS
- g		223	10	15		ь	
13C ₆ -PFDA	519	473.9	5	10	No	13C ₂ -PFDA	Extracted IS
6		219	5	15		2	
13C ₇ -PFUnDA	569.9	524.9	5	10	No	13C ₂ -PFDA	Extracted IS
		274	5	15		*	
¹³ C-PFDoDA	614.9	569.9	10	10	No	13C ₂ -PFDA	Extracted IS
		169	10	25			
¹³ C ₂ -PFTreDA	714.9	169	25	35	No	13C2-PFDA	Extracted IS
-		669.9 80.1	25 10	10 30			
13C ₃ -PFBS	301.9	99.1	10	25	No	18O2-PFHxS	Extracted IS
		80.1	10	40			
13C ₃ -PFHxS	401.9	99.1	10	35	No	1802-PFHxS	Extracted IS
		80.1	15	40			
13C ₈ -PFOS	506.9	99.1	15	40	No	¹³C₄-PFOS	Extracted IS
201000 0200 000	200000000	169	5	12			
¹³C₃-GenX	287	119	5	12	Yes	¹³ C ₂ -PFHxA	Extracted IS
		308.9	40	15			
¹³ C ₂ -4:2 FTS	328.9	81	40	25	No	1802-PFHxS	Extracted IS
120 00 FT0	400.0	409	10	20	N	4000 PELL 0	F 110
¹³ C ₂ -6:2 FTS	428.9	80.9	10	27	No	1802-PFHxS	Extracted IS
13.C. 0.0 FTC	F00.0	508.9	10	20	NI-	1000 DELL.C	Future et ed IC
¹³ C ₂ -8:2 FTS	528.9	81	10	35	No	1802-PFHxS	Extracted IS
13C ₈ -FOSA	505.9	78.1	35	25	No	13C ₄ -PFOS	Extracted IS
d ₃ NMeFOSA	514.9	168.9	40	30	No	13C ₄ -PFOS	Extracted IS
d₅NEtFOSA	531	168.9	5	25	No	13C ₄ -PFOS	Extracted IS
D ₅ -N-EtFOSAA	589	418.9	30	20	No	13C ₄ -PFOS	Extracted IS
5 11 Ell OOAA	000	506.9	30	15	.,,0	04 . 1 00	Extracted to
D ₃ -N-MeFOSAA	572.9	418.9	35	20	No	13C ₄ -PFOS	Extracted IS
		482.7	35	15		- 4	
d7-NMeFOSE	623	58.9	15	15	No	¹³C₄-PFOS	Extracted IS
d9-NEtFOSE	639	58.9	15	15	No	¹³C₄-PFOS	Extracted IS
¹³C₃-PFBA	216	172	10	10	No	-	Non-extracted IS
13C ₂ -PFHxA	314.9	119.9	10	20	No	-	Non-extracted IS
-	447	270	10	5	N-	700	New autority 110
¹³C₄-PFOA	417	172	10	20	No	-	Non-extracted IS
¹³ C ₅ -PFNA ¹³ C ₃ -PFDA	468	423	10	10	No		Non-extracted IS
-	515	470	20	10	No No	-	Non-extracted IS
18O2-PFHxS	403	83.9	10 15	40	No		Non-extracted IS
		80.2					

Appendix Table 1. MS Method conditions used for PFAS analysis of EPA 1633 compounds in water samples on the

Xevo TQ Absolute MS.		

Compound	Cal 1 (ng/mL)	Cal 2 (ng/mL)	Cal 3 (ng/mL)	Cal 4 (ng/mL)	Cal 5 (ng/mL)	Cal 6 (ng/mL)	Cal 7 (ng/mL)	Cal 8 (ng/mL
PFBA	0.02	0.04	0.20	0.40	1.00	2.00	4.0	10.0
PFPeA	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
PFHxA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFHpA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFOA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFNA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFDA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFUnDA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFDoDA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFTriDA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFTreDA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFBS	0.005		0.05	0.10	0.25	0.50		2.5
		0.01					1.0	
PFPeS	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFHxS	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFHpS	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFOS	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFNS	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFDS	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
PFDoDS	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
GenX	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
ADONA	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
9CIPF3ONS	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
11CIPF3OUdS	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
4_2 FTS	0.02	0.02	0.20	0.40	1.00	2.00	4.0	10.0
6_2 FTS	0.02	0.04	0.20	0.40	1.00	2.00	4.0	10.0
8_2 FTS	0.02	0.04	0.20	0.40	1.00	2.00	4.0	10.0
FOSA				1				
	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
NMeFOSA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
NEtFOSA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
NMeFOSAA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
NEtFOSAA	0.005	0.01	0.05	0.10	0.25	0.50	1.0	2.5
NMeFOSE	0.05	0.10	0.50	1.00	2.50	5.00	10.0	25.0
NEtFOSE	0.05	0.10	0.50	1.00	2.50	5.00	10.0	25.0
3:3 FTCA	0.02	0.04	0.20	0.40	1.00	2.00	4.0	10.0
5:3 FTCA	0.10	0.20	1.00	2.00	5.00	10.0	20.0	50.0
7:3 FTCA	0.10	0.20	1.00	2.00	5.00	10.0	20.0	50.0
PFMPA	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
PFMBA	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
PFEESA	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
NFDHA	0.01	0.02	0.10	0.20	0.50	1.00	2.0	5.0
M4 PFBA	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
M5_PFPeA	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
M5_PFHxA	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
M4_PFHpA	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
							1	
M8_PFOA	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
M9_PFNA	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
M6_PFDA	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
M7_PFUnDA	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
M_PFDoDA	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
M2_PFTreDA	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
M3_PFBS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
M3_PFHxS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
M8_PFOS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
M2_42FTS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
M2_62FTS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
M2_82FTS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
M8_FOSA	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
M3_GenX	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
D3_NMeFOSAA	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
D5_NEtFOSAA	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
dNMeFOSA	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
dNEtFOSA	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
		1			1			
d7 NMeFOSE	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
d9 NEtFOSE	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
M3 PFBA_NIS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
M2 PFHxA_NIS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
M4 PFOA_NIS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
M5 PFNA_NIS	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
M2 PFDA_NIS	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
I8O2 PFHxS_NIS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
		0.50	0.50	0.50	0.50	0.50	0.50	0.50

Appendix Table 2. Calibration curve range used for PFAS analysis of EPA 1633 compounds in water samples on

the Xevo TQ Absolute MS **Featured Products** ACQUITY Premier System https://www.waters.com/waters/nav.htm?cid=135077739 Xevo TQ Absolute Triple Quadrupole Mass Spectrometry < https://www.waters.com/waters/nav.htm?cid=135094698> waters_connect for Quantitation https://www.waters.com/waters/nav.htm?cid=135091497 720008143, December 2023 © 2024 Waters Corporation. All Rights Reserved. 使用條款 隱私權政策 商標 就業機會 法律和隱私權聲明 Cookie Cookie偏好設定