Obtaining Equivalent IEX Chromatographic Performance Through Automated Method Scaling Using Waters[™] Column Calculator

Pawel Bigos, Robert E. Birdsall, Ying Qing Yu

Waters Corporation

Abstract

As upstream workflows are developed and refined, associated analytical methods are eventually migrated downstream to support process development and routinely monitor product and process attributes associated with the active pharmaceutical ingredient. For biotherapeutics, monitoring of charge variants associated with monoclonal antibodies (mAbs) is critical to establish product stability and process consistency. In this respect, ensuring assay results remain consistent as methods are migrated downstream can save time spent on qualification and validation activities. In this application note, an ion-exchange chromatography (IEX) method for monoclonal antibodies (mAbs) was scaled using the Waters Column Calculator from an ACQUITY[™] Premier System (UPLC[™]) to an Arc[™] Premier System (UHPLC) representative of upstream and downstream LC configurations. Results from this study demonstrate that with appropriate scaling, methods can be migrated to downstream workflows, while retaining the chromatographic performance in terms of selectivity and peak area percent.

Benefits

- · ACQUITY Premier and Arc Premier systems deliver consistent results using pH or salt gradients
- BioResolve[™] SCX mAb Columns are offered in a variety of dimensions to support IEX workflows across UPLC and UHPLC platforms
- · BioResolve CX pH Buffer Concentrates enable reduced preparation and bench time to achieve robust and

reproducible cation-exchange separation

· The Waters Column Calculator offers straightforward method scaling with minimal user input

Introduction

Pharmaceutical companies typically have a broad assortment of chromatography instruments deployed across laboratories to support development and manufacturing of biotherapeutics. As part of this dynamic, analytical methods are frequently developed and migrated across labs, ideally with consistent results. However, flow path differences across systems can impact system volume and dispersion, thereby affecting subsequent chromatographic results. Numerous parameters must be scaled appropriately to account for differences in column geometry and system dwell volume to maintain chromatographic performance regardless of separation technique (Figure 1). When scaling manually, these calculations take time to perform and are prone to error. Waters offers users a Column Calculator version 2.0 that has automated the method scaling process while requiring minimal user input.

To demonstrate this, the Waters Column Calculator was used to scale an IEX UPLC method developed on the ACQUITY Premier System and then migrated to an UHPLC method on the Arc Premier System. To enable optimized performance across systems, Waters offers the same BioResolve SCX mAb Column particle technology with 2.1 mm internal diameter columns for UPLC instruments and 4.6 mm columns for UHPLC instruments. With these column formats, scaled methods were migrated while preserving separation performance. Both pH and saltbased gradients were evaluated due to their prevalence in charge variant separation. In this work, percent peak area and relative retention time were used as metrics to demonstrate successful method migration of an upstream method to support downstream workflows.

Experimental

Sodium chloride, MES monohydrate, MES salt, and caffeine was purchased from Sigma Aldrich. The Infliximab drug product Remicade[™] was purchased from Amerisource Bergen and prepared (10 mg/mL) using sterile water

as per manufacturer's instructions and injected neat.

ACQUITY Premier LC/UV Conditions¹

LC system:	ACQUITY Premier System (QSM-variant)
Detection:	ACQUITY TUV, FC=Ti 5 mm, λ =214 nm, 280 nm
Vials:	QuanRecovery™ Vials with MaxPeak™ High Performance Surfaces, (p/n: 186009186)
Column(s):	BioResolve SCX mAb Column, 3 μm, 2.1 mm x 100 mm (p/n: 186009056)
Column temperature:	40 °C
Sample temperature:	10 °C
Injection volume:	1 µL
Flow rate:	0.100 mL/min
Mobile phase A:	BioResolve CX pH Concentrate A (p/n: 186009063) or 20 mM MES buffer, pH 6.7
Mobile phase B:	BioResolve CX pH Concentrate B (p/n: 186009064) or 20 mM MES buffer with 200 mM NaCl, pH 6.7
Chromatography software:	Empower 3, FR4

Arc Premier LC/UV Conditions

LC system:	Arc Premier System (QSM-variant)
Detection:	2489 UV/Vis Detector, 10 mm pathlength, λ =214 nm, 280 nm
Vials:	QuanRecovery Vials with MaxPeak High Performance Surfaces, (p/n: 186009186)
Column(s):	BioResolve SCX mAb Column, 3 µm, 4.6 mm x 100 mm (p/n: 186009060)
Column temperature:	40 °C
Sample temperature:	10 °C
Injection volume:	4.8 µL
Gradient start - after injection:	785 µL
Flow rate:	0.480 mL/min
Mobile phase A:	BioResolve CX pH Concentrate A (p/n: 186009063) or 20 mM MES buffer, pH 6.7
Mobile phase B:	BioResolve CX pH Concentrate B (p/n: 186009064) or 20 mM MES buffer with 200 mM NaCl, pH 6.7
Chromatography software:	Empower 3, FR4

Time	Flow (mL/min)	%A	%В	%C	%D	Curve
Initial	0.100	81.5	18.5	0.0	0.0	Initial
45.00	0.100	61.0	39.0	0.0	0.0	6
46.00	0.100	10.0	90.0	0.0	0.0	6
49.00	0.100	10.0	90.0	0.0	0.0	6
50.00	0.100	81.5	18.5	0.0	0.0	6
70.00	0.100	81.5	18.5	0.0	0.0	6

ACQUITY Premier Gradient (BioResolve CX pH Concentrates)

Arc Premier Gradient (BioResolve CX pH Concentrates)

Time	Flow (mL/min)	%A	%В	%C	%D	Curve
Initial	0.480	81.5	18.5	0.0	0.0	Initial
45.00	0.480	61.0	39.0	0.0	0.0	6
46.00	0.480	10.0	90.0	0.0	0.0	6
49.00	0.480	10.0	90.0	0.0	0.0	6
50.00	0.480	81.5	18.5	0.0	0.0	6
70.00	0.480	81.5	18.5	0.0	0.0	6

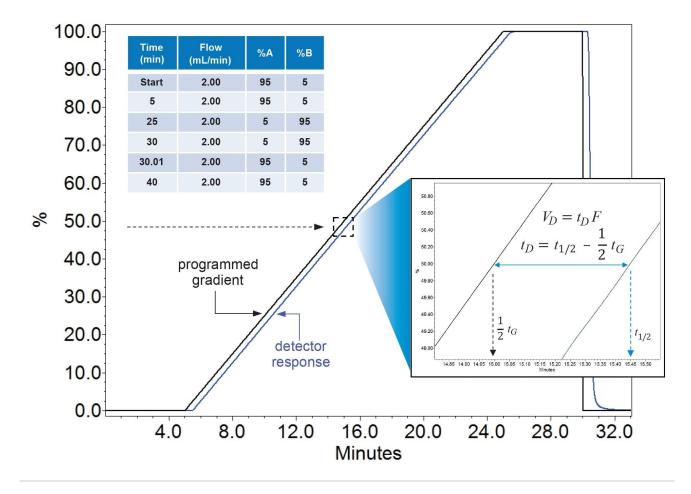
Time	Flow (mL/min)	%A	%В	%C	%D	Curve
Initial	0.100	91.0	9.0	0.0	0.0	Initial
38.00	0.100	72.0	28.0	0.0	0.0	6
39.00	0.100	0.0	100.0	0.0	0.0	6
44.00	0.100	0.0	100.0	0.0	0.0	6
45.00	0.100	91.0	9.0	0.0	0.0	6
70.00	0.100	91.0	9.0	0.0	0.0	6

ACQUITY Premier Gradient (20 mM MES Buffer, pH 6.7)

Arc Premier Gradient (20 mM MES Buffer, pH 6.7)

Time	Flow (mL/min)	%A	%В	%C	%D	Curve
Initial	0.480	91.0	9.0	0.0	0.0	Initial
38.00	0.480	72.0	28.0	0.0	0.0	6
39.00	0.480	0.0	100.0	0.0	0.0	6
44.00	0.480	0.0	100.0	0.0	0.0	6
45.00	0.480	91.0	9.0	0.0	0.0	6
70.00	0.480	91.0	9.0	0.0	0.0	6

Results and Discussion


Throughout the life cycle of a drug product, from drug discovery to a marketed drug, analytical methods are migrated downstream from characterization labs to manufacturing and quality control workflows. Ideally, the downstream method should provide comparable results to historical data generated from earlier developed

analytical methods. In downstream workflows, instruments supporting manufacturing and quality control are engineered to be more forgiving toward method conditions and tend to have larger internal diameters for tubing and columns for increased robustness. As shown in Figure 1, several parameters must be considered to account for these differences to successfully migrate a method downstream. The Waters Column Calculator is able to automate these calculations with minimal user input. From the parameters shown, only dwell volume offset is dependent on the individual system and must be determined experimentally.

Parameter	umn efficiency $L_1/dp_1 = L_2/dp_2$ olumn volume $V = \pi r^2 l$ ection volume $Vi_2 = Vi_1 x (V_2/V_1)$ Flow rate $F_2 = F_1 x \left(\frac{dp_1}{D_1^2}\right) / \left(\frac{dp_2}{D_2^2}\right)$ Run time $t_2 = t_1 x \left(\frac{V_2}{F_2}\right) / \left(\frac{V_1}{F_1}\right)$ volume offset $DV = Vd_1 - (Vd_2 x \frac{V_1}{V_2})$	Variable definition	
Column efficiency	$L_1/dp_1 = L_2/dp_2$	L = column length	
-		<i>dp</i> = particle diameter	
Column volume	$V = \pi r^2 l$	V = column volume	
Injection volume	$Vi_2 = Vi_1 x (V_2/V_1)$	Vd = system dwell volume	
		D = column diameter	system dwell volume column diameter column radius column length njection volume
Flow rate	$F_2 = F_1 x \left(\frac{dp_1}{2}\right) / \left(\frac{dp_2}{2}\right)$	r = column radius	
	$\frac{1}{2} \frac{1}{2} \frac{1}$	l = column length	
	(V_2) (V_1)	Vi = injection volume	volume ter
Run time	$t_2 = t_1 x \left(\frac{r_2}{F_2}\right) / \left(\frac{r_1}{F_1}\right)$	$\frac{Vd}{dt} = \text{system dwell volume}$ $\frac{Vd}{D} = \text{column diameter}$ $\frac{Vd}{D} = \text{column diameter}$ $\frac{Vd}{D} = \text{column diameter}$ $r = \text{column radius}$ $l = \text{column length}$ $\frac{Vd}{D} = \text{column radius}$ $\frac{Vd}{D} = \text{column length}$ $\frac{Vd}{D} = \text{column radius}$ \frac{Vd}	
		T = segment duration	th neter me Il volume neter us th ume ration me of the
Dwell volume offset	$DV = Vd_1 - (Vd_2 x \frac{V_1}{V})$	t = run duration	
	V2 ⁻	GS = column volume of the	
Column volume of	GS = (FT)/V	gradient segment	
Gradient segment			

Figure 1. Parameters that need to be considered to appropriately scale methods.

In this study, system dwell volume was determined following the conditions listed in Figure 2 for the ACQUITY Premier System and Arc Premier System.² The dwell volume results as well as the column dimensions and ACQUITY Premier systems gradient conditions were entered into the Waters Column Calculator (Figure 3). Due to the differences in column geometry between Premier systems, the Column Calculator appropriately scaled the flow rate and injection volume to maintain identical column loading and column volumes. Based on the dwell volume difference between systems, the Column Calculator recommended an isocratic hold of 785 µL for the migrated Arc Premier System to match the retention times observed from the ACQUITY Premier System. These

scaled conditions were entered as method parameters in Figure 3.

Figure 2. Measuring dwell volume by calculating the difference between the detector response and programmed gradient. Mobile phase A: Water, Mobile phase B: 10mg/L caffeine in water, wavelength: 273 nm.

	Ψ	<u>u</u>	<u>-</u>)	TM L		IER	,		A		_	<					General M Accelerate	to2mL/min		5 min (4.44 <mark>4</mark> mL/mir	n/min)	
Columns Calcu	lator													- 🗆 X									
ptions Pressu													Res	Print Print			Gradient sta	arts:	С	At injection Before inject After injection			
rom escribe your	original n	nethod.					To	 scribe you	r target me	thod.											-		
Column	Diamete Length (Particle S	L):	2.100 100 3.0		nm nm im		C	olumn	Diamete Length (Particle S):	4.600 100 3.0		nm nm		Quater	nary So	olvent M	anage	r-R		Auto • Ble Plus*		
System	L/dp: Dwell vo	lume:	33,333 0.354		mL 🕜		S	Urdp: 33,333 System Dwell volume: 0.913 mL ?? High pressure limit: 9.500 pil ??							General A: Wat	er		0	Low pressu		0	psi	
Method Injection volume 1.0 µL Temperature: 40 °C Runtime 70.00 min				N	Method Flow rate: Scaled: (0.480 mL/min) Custom: 0.850 mL/m					'min	B: Wat C: D:	er	•		High press Seal wash		9500 2.50	psi min					
Time	Flow	%4	%B	%C	%D	Column Volumes		Time	Flow Rate	%A	%8	%C	%D	Column Volumes	Gradien	t Table							
(min)	(mL/min) 0.100	Water 81.5	Acetonitr 18.5	Methano 0.0	Water 0.0	0.00 ^	1	(min) 0.00	(mL/min) 0.480	Water 81.5	Acetoniti 185	Methano 0.0	0.0	000 ^	Æ۳	Time	Flow	%A	%B	%C	%D	Curve	
	0.100	61.0	39.0	0.0	0.0	19.69	2	45.00	0.480	61.0	39.0	0.0	0.0	19.69			(mL/min)						1
3	0.100	10.0	90.0	0.0	0.0	0.44	3	46.00	0.480	10.0	90.0	0.0	0.0	0.44	1	Initial	0.480	81.5	18.5	0.0	0.0	Initial	
	0.100	10.0	90.0 18.5	0.0	0.0	0.44	4	49.00	0.480	10.0 81.5	90.0	0.0	0.0	131	2	45.00	0.480	61.0	39.0	0.0	0.0	6	
240010400	0.100	81.5	18.5	0.0		8.75	1	70.00	0.480	81.5		0.0	HE reco	t the nmended hold	3	46.00	0.480	10.0	90.0	0.0	0.0	6	
									4.8	μι	70.00	min	785.6 µ	0	4	49.00	0.480	10.0 81.5	90.0 18.5	0.0	0.0	6	

Figure 3. Incorporating scaled parameters and system dwell volume differences into the instrument method.

The method migrated in this work was an IEX-based method using BioResolve CX pH Concentrates and BioResolve SCX mAb Columns. These BioResolve pH Concentrates are engineered to deliver reproducible linear pH gradients for optimal separation of charge variants when using IEX-based columns such as the BioResolve SCX mAb Column. While maintaining the same resolving power (length/particle size ratio), two BioResolve SCX mAb Columns with different internal diameters were used in the original and scaled method. Remicade, a mAbbased therapy, was analyzed using the original method as well as the scaled method with/without dwell volume adjustments (Figure 4). In both cases the %RSD for retention time is below 1% for five replicate injections demonstrating the reproducibility of the BioResolve Column technology. However, the reader can see from the middle chromatogram, when the isocratic hold is not utilized, the overall profile has shifted by approximately two minutes. While acceptable in terms of maintaining peak resolution, in a regulated lab environment where retention times for analytical methods are specified, matching the chromatographic profile is important for adequate method migration. When the isocratic hold is used (Figure 4, bottom chromatogram), the chromatographic profiles align closely from the original method.

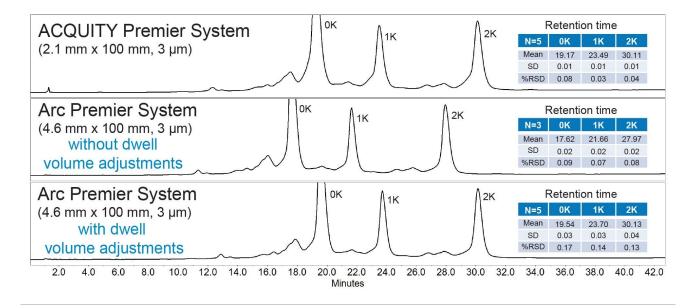


Figure 4. Evaluation of retention time differences with migrated methods when dwell volume differences are and are not accounted for.

The relative retention time and relative percent peak area were calculated for five replicate injections to evaluate the scaled methods ability in terms of reproducibility and chromatographic performance. As shown in Figure 5, the absolute difference in relative retention time was below 0.03 for the scaled method and the relative percent peak area was within ~0.5% of the original method. In addition, a conventional salt gradient was scaled to evaluate the ability of the BioResolve columns to preserve chromatographic performance using more traditional mobile phases to demonstrate broader applicability. The scaled method maintained comparable selectivity and peak area minimizing the need for further optimization for both gradients (Figure 5). These results highlight the robust performance of both instruments and the ability for the Column Calculator to properly scale IEX methods.

10

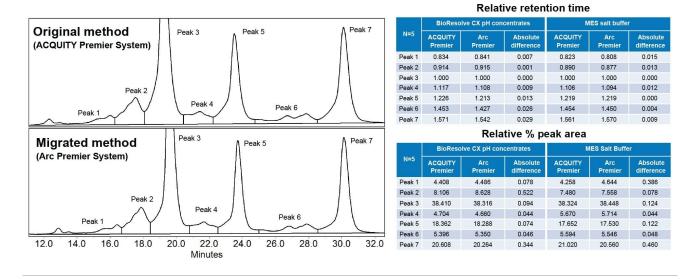


Figure 5. Relative retention time and relative percent peak area comparison between the original and migrated method using pH and salt-based gradients.

Conclusion

The Waters Column Calculator is a valuable tool for quickly scaling methods by automating the calculation of operating parameters that provide equivalent chromatographic performance. This application note demonstrated that the calculated method conditions on a scaled UHPLC system replicated the original UPLC methods performance. When comparing between systems, the relative retention time of Remicade had an absolute difference below 0.03 and relative peak areas were within 0.5% of the original method for both pH and saltbased gradients. When appropriately scaled, IEX methods can be migrated between systems seamlessly and expected to generate robust performance.

References

1. Birdsall RE, Koshel BM, Yu YQ. Accelerating Charge Variant Analysis of Biotherapeutics with the BioAccord™

System. Waters Application Note. 2022. 720007706.

 Hong P, McConville PR. Dwell Volume and Extra-Column Volume: What Are They and How Do They Impact Method Transfer. Waters Application Note. 2018. 720005723. <
 https://www.waters.com/webassets/cms/library/docs/720005723en.pdf>

Featured Products

Arc Premier System <https://www.waters.com/waters/nav.htm?cid=135083359> ACQUITY Premier System <https://www.waters.com/waters/nav.htm?cid=135077739> 2489 UV/Visible (UV/Vis) Detector for Purification and Modular LC Systems < https://www.waters.com/134721513> Empower Chromatography Data System https://www.waters.com/10190669> BioResolve CX pH Concentrate A <https://www.waters.com/nextgen/global/shop/standards-reagents/186009063-bioresolve-cx-ph-concentrate-a.html> BioResolve CX pH Concentrate B <https://www.waters.com/nextgen/global/shop/standards-reagents/186009064-bioresolve-cx-ph-concentrate-b.html> BioResolve SCX mAb Column, 3 µm, 4.6 mm x 100 mm, 1/pk < https://www.waters.com/nextgen/global/shop/columns/186009060-bioresolve-scx-mab-column-3--m-46-mmx-100-mm-1-pk.html> BioResolve SCX mAb Column, 3µm, 2.1 mm X 100 mm, 1/pk < https://www.waters.com/nextgen/global/shop/columns/186009056-bioresolve-scx-mab-column-3-m-21-mm-x-100-mm-1-pk.html> QuanRecovery with MaxPeak HPS 12 x 32 mm Screw Neck Vial, 300 µL, 100/pk < https://www.waters.com/nextgen/global/shop/vials-containers--collection-plates/186009186-guanrecoverywith-maxpeak-hps-12-x-32-mm-screw-neck-vial-300--l-.html> Waters Column Calculator https://www.waters.com/waters/support.htm?lid=134891632&type=DWNL

720007807, December 2022

Obtaining Equivalent IEX Chromatographic Performance Through Automated Method Scaling Using Waters™ Column Calculator © 2023 Waters Corporation. All Rights Reserved.

Terms of Use Privacy Trademarks Sitemap Careers Cookies Preferências de cookies