Waters™

Application Note

Seamless Method Transfer and Migration Between Instruments: Replicating an Aspirin and Related Substances Method on an Arc HPLC System

Margaret Maziarz, Paul D. Rainville

Waters Corporation

Abstract

Replicating results and demonstrating equivalent performance for same analysis are critical for a successful method migration to a different LC system or transfer between labs. In this work, seamless migration of a related substances of aspirin active pharmaceutical ingredient (API) method to an Arc HPLC System is presented by demonstrating equivalent method performance. The Arc HPLC System successfully replicated the quality of the chromatographic separation, system suitability and related substances assay results generated on other comparable HPLC Systems.

Benefits

- · Seamless and easy migration of HPLC methods to an Arc HPLC System
- · Robust, reliable, and reproducible performance of an Arc HPLC System
- · Improve laboratory efficiency and maximize productivity

Introduction

Validated analytical methods are often transferred across laboratories and to partners such as CRO's and CMO's that are equipped with LC systems from different vendors. When methods are transferred, the receiving laboratory needs to generate equivalent results for the same analysis to assure quality control and compliance with the regulatory guidelines.¹ Additionally, if a new modern instrument is introduced into a laboratory, it must also be capable of replicating all the validated method's performance attributes.

Migration of chromatographic methods between different LC systems, especially from different manufacturers, can be a challenging task. Often, these instruments have different system volumes, which may cause poor chromatographic separation and peak distortion in gradient methods. This may produce different results for the same analysis generated across instruments.

In this work, migration of an HPLC method for related substances analysis of aspirin API to an Arc HPLC system is presented. The equivalent performance is demonstrated by examining chromatographic separation, system suitability results and related substances assay results. We show that the Arc HPLC System successfully replicates methods, producing equivalent chromatographic separation and analytical results generated by the method to the results obtained on the comparable LC systems.

The Arc HPLC System is a robust, reliable, and reproducible modern instrument suitable for routine testing that can replicate established HPLC methods.²

Experimental

Sample Description

Aspirin and impurities standard mixture

Separate stock solutions with related substances and aspirin API were prepared in diluent (60:40 water/acetonitrile with 0.1% formic acid) at 1.0 and 5.0 mg/mL, respectively. The API stock solution was diluted with diluent to 0.1 mg/mL and spiked with related substances at 10% level.

Aspirin and its related substances specified by the European Pharmacopeia³ are listed in Table 1.

Compound	Name	Molecular formula	Monoisotopic mass (Da)	Structure	
Aspirin API	2-Acetoxybenzoic acid, O-Acetylsalicylic acid	C ₉ H ₈ O ₄	180.04	O_OH CH ₃	
Impurity A	p-Salicylic acid, 4-hydroxybenzoic acid	C ₇ H ₆ O ₃	138.03	но	
Impurity B	4-Hydroxy-1,3- benzenedicarboxylic acid, 4-Hydroxyisophthalic acid	$C_8H_6O_5$	182.02	но	
Impurity C	Salicylic acid; 2-Hydroxybenzoic acid o-Hydroxybenzoic acid	C ₇ H ₆ O ₃	138.03	HO	
Impurity D	Acetylsalicylsalicylic acid, 2-(Acetyloxy) benzoic acid	C ₁₆ H ₁₂ O ₆	300.06	Y° C	
Impurity E	2-((2-hydroxybenzoyl)oxy) benzoic acid, salsalate	C ₁₄ H ₁₀ O ₅	258.05	HO CO OH	
Impurity F	2-Acetoxybenzoic anhydride, O-acetylsalicylic anhydride,	C ₁₈ H ₁₄ O ₇	342.07	H ₃ C O O CH ₃	

Table 1. List of compounds for method development. Related substances (impurities) of aspirin API.

Aspirin drug tablets

Crushed tablets were dissolved in diluent (60:40 water/acetonitrile with 0.1% formic acid) at 1.6 mg/mL of aspirin by sonication for 10 minutes. After extraction, sample test solutions were centrifuged for 10 minutes at 3000 rpm and diluted to 0.5 mg/mL with diluent. Solutions were filtered through 0.2 µm nylon syringe (Waters p/n# WAT200524 https://www.waters.com/nextgen/us/en/shop/sample-preparation--filtration/wat200524-acrodisc-syringe-filter-nylon-13-mm-02--m-aqueous-100-pk.html) filter prior analysis.

Conditions

LC systems: Agilent 1260 Infinity II LC System with DAD

Detector

Alliance e2695 HPLC System with 2998 PDA

Detector, Column Heater/Cooler with Passive

Pre-heater Arc HPLC System with 2998 PDA Detector, Column Heater/Cooler with Passive Pre-heater Vials: LCMS Maximum Recovery 2 mL volume, (p/n 600000670CV) Column(s): XSelect HSS T3, 4.6 x 150 mm, 3.5 μm (p/n 186004786) 40 °C Column temp.: 10 °C Sample temp.: Injection volume: 15 µL Mobile phase: A: 0.1% formic acid in water B: 0.1% formic acid in acetonitrile Wash solvents: Purge/sample wash: 60:40 water/acetonitrile Seal wash: 90:10 water/acetonitrile

PDA: 210-400 nm (derived at 237 nm)

Detector settings:

Gradient

Time (min)	Flow (mL/min)	%A	%В	Curve	
Initial	1.8	95.0	5.0	6	
0.10	1.8	95.0	5.0	6	
7.60	1.8	5.0	95.0	6	
9.20	1.8	5.0	95.0	6	
9.30	1.8	95.0	5.0	6	
13.00	1.8	95.0	5.0	6	

Software

Chromatography Data Software (CDS):

Empower 3 FR4 SR2

Results and Discussion

The analysis for aspirin and its associated related substances was performed under MS compatible conditions, based on a previously developed method.⁴ The method was scaled to 3.5 μ m particle size column using columns calculator⁵ and run on Agilent 1260 Infinity II, Alliance e2695, and Arc HPLC systems. The chromatographic separation produced on the Arc HPLC System was comparable with the data on the Agilent and Alliance HPLC systems (Figure 1). The Arc HPLC System resulted in a USP resolution of \geq 5.8 for between all analytes, peak tailing of 1.1–1.2, and retentivity factor \geq 2.0.

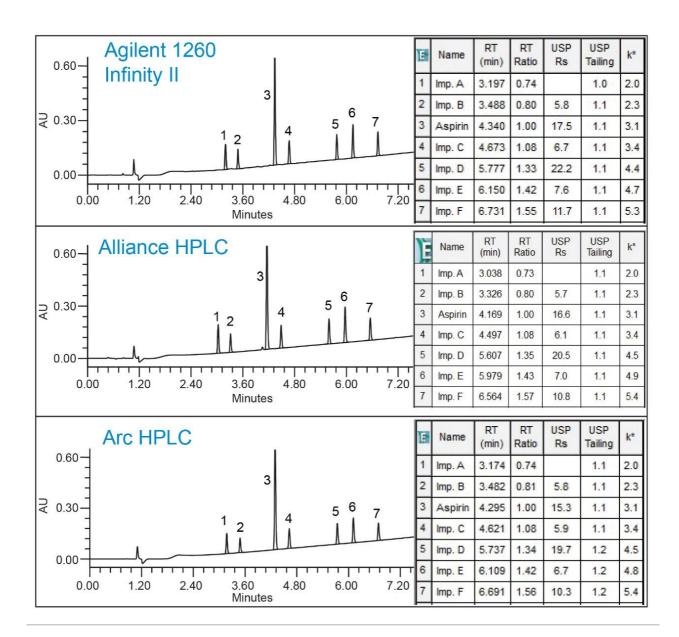


Figure 1. Chromatographic separation for aspirin and its impurities for method transfer between systems. UV 237 nm.

Additionally, the relative retention times (RRT) of related substances were compared across the systems. The RRT values are often used to aid peak identification in chromatographic separation, therefore is it important that they are the same when performing transferring related substances assay method on another system. In this study, the RRT were calculated by comparing retention of each related substance to the aspirin retention time. The data showed that the RRT values obtained on the Arc HPLC System were in an agreement with the results on the Agilent and Alliance systems (Figure 2). Overall, the Arc HPLC System successfully replicated the quality of the chromatographic separation without the alteration to the method.

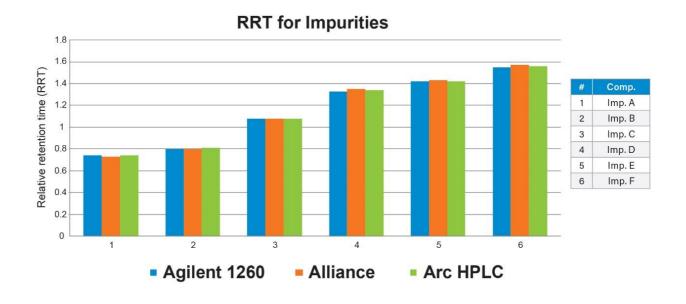


Figure 2. Relative retention times (RRT) ratios for related substances (impurities) with respect to the aspirin retention time.

Performance of the method on the Arc HPLC System was assessed by measuring system suitability of five replicate injections of the standard mixture following the requirements listed in the USP monograph for aspirin tablets⁵ and compared with other systems. The USP system suitability requirements included:

- · Resolution: not less than (NLT) 2.0 between salicyclic acid (impurity C) and aspirin
- · Relative standard deviation (RSD): not more than (NMT) 4.0%, salicyclic acid (impurity C)

The system suitability results generated on all three systems met the USP criteria (Figure 3). Additionally, the RSD of impurity C peak areas and retention times generated on the Arc HPLC System was lower than the USP requirement of NMT 4.0% and the results acquired on the other LC systems.

Ag	gilen	t 1	260	Infi	nit	y II	Alliance HPLC							Arc HPLC						
1 == 1	Nam	е	RT	Are	а	USP Tailing		Nam	e F	RT	Are	ea	USP Tailing		Nam	e F	RT	Area	U SP Tailing	
1	Aspi	rin 4	4.339	1229	256	1.1	1	Aspir	in 4.	158	1498	891	1.1	1	Aspii	rin 4.3	295	132531	7 1.1	
2	Aspi	rin 4	4.340	1238	239	1.1	2	Aspir	in 4.	158 1510420		1.1	2	Aspirin 4.2		295	132929	9 1.1		
3	Aspi	rin 4	1.341	1248	433	1.1	3	Aspir	in 4.	159 1519427		1.1	3	3 Aspirin		295	133294	1 1.1		
4	Aspi	rin 4	4.341	1250	097	1.1	4	Aspir	in 4.	159	1520	922	1.1	4	Aspi	rin 4.3	296	132309	4 1.1	
5	Aspi	rin 4	4.341	1237	316	1.1	5	Aspir	in 4.	163	1532	817	1.1	5	Aspir	rin 4.3	296	132613	6 1.1	
Mean		4	4.340	1240	668	1.1	Mean	7.0	4.	159	1516	496	1.1	Mean		4.3	295	132735	7 1.1	
Std. Dev	v.	(0.001	8610.	283		Std. Dev.	-	0.	002	12662	2.992		Std. Dev		0.0	001	3833.23	3	
% RSD			0.02	0.6	9		% RSD		0	0.05 0.84		% RSD		0.	.02	0.29				
	Name	RT		Area	USP	USP Tailing		Name	RT	Aı	rea	USP Rs	USP Tailing		Name	RT	Are	ea US		
1	Im p. C	4.67	3 2	37451	6.9	1.1	1	Imp. C	4.487	272	2883	6.1	1.1	1	Imp. C	4.621	250	711 5	9 1.1	
2	Im p. C	4.67	3 2	41529	6.8	1.1	2	Imp. C	4.487	275	5287	6.2	1.1	2	Im p. C	4.622	250	396 5	9 1.1	
3	Im p. C	4.67	4 2	38658	6.9	1.1	3	Imp. C	4.488	276	6095	6.1	1.1	3	Imp. C	4.623	252	695 5	9 1.1	
4	Im p. C	4.67	5 2	41209	6.8	1.1	4	Imp. C	4.488	276	5920	6.2	1.1	4	Imp.C	4.623	250	344 5	9 1.1	
5	Im p. C	4.67	5 2	38978	6.8	1.1	5	Imp. C	4.491	277	7389	6.1	1.1	5	Imp. C	4.624	250	915 5	9 1.1	
Mean		4.67	4 2	39565	6.8	1.1	Mean		4.488	275	5715	6.2	1.1	Mean		4.623	251	012 5	9 1.1	
Std. Dev.		0.00	1 17	46.229			Std. Dev.		0.002	177	5.039			Std. Dev.		0.001	969.	299		
% RSD		0.0	2	0.73			% RSD		0.04	0.	.64			% RSD		0.02	0.3	39		

Figure 3. System suitability results for method transfer across systems.

Related substances assay results

The assay for related substances content (% impurity) was determined by comparing peak areas of each related substance to the aspirin peak area. Example of chromatographic data of the tablet sample solution analysis on Arc HPLC is shown in Figure 4. The assay results were compared against the criteria specified in the impurities procedure of the USP monograph for aspirin tablets. The USP acceptance criteria for impurities in coated tablets includes not more than (NMT) 3.0% of salicyclic acid (impurity C). The related substances results generated on Agilent 1260, Alliance, and Arc HPLC systems met the USP criteria (Table 2).

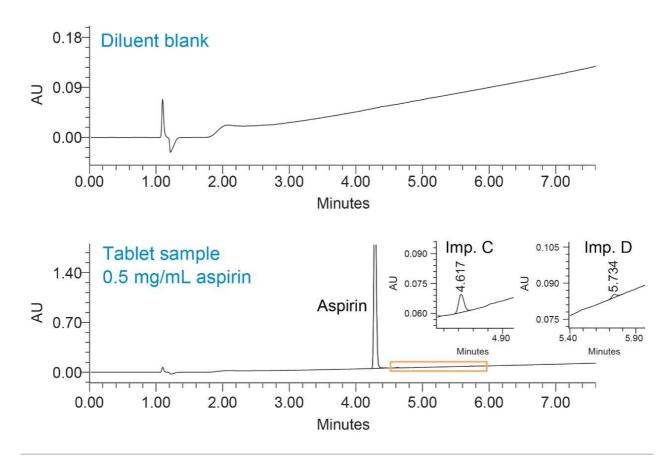


Figure 4. Analysis of tablet sample solution for related substances content. Samples at 0.5 mg/mL of aspirin on the Arc HPLC System. UV at 237 nm.

System	% Imp. C	% Imp. D
Agilent 1260 Infinity II	0.41	0.04
Alliance HPLC	0.37	0.05
Arc HPLC	0.38	0.04

Table 2. Assay results for related substances (%) in the tablet sample solution met the USP criteria of NMT 3.0% of salicyclic acid (impurity C).

Conclusion

The Arc HPLC System successfully replicated the assay method for related substances of aspirin active ingredient run on the Agilent 1260 Infinity II and Alliance HPLC systems. The chromatographic separation, relative retention times values, system suitability and related substances assay results produced on the Arc HPLC System met the acceptance criteria.

Overall, the Arc HPLC System easily accepts and replicates existing LC methods from a variety of platforms, producing equivalent test results without compromising method integrity. This eliminates the need to change and revalidate existing methods and remains in compliance with regulatory guidelines as the asset replacement does not require any adjustment which might be considered a method change. The Arc HPLC is a modern instrument that delivers powerful performance, high injection precision, low carryover, and high backpressure tolerance.

References

- USP General Chapter (1224), Transfer of Analytical Procedures. United States Pharmacopeia USP 43-NF 38, official prior 2013.
- 2. Arc HPLC System. https://www.waters.com/waters/en_US/Arc-HPLC-System/nav.htm?locale=en_US&cid=135068659 < https://www.waters.com/waters/en_US/Arc-HPLC-System/nav.htm?locale=en_US&cid=135068659> .
- 3. Ph. Eur. Monograph. Acetylsalicyclic Acid. The European Pharmacopeia 10.0. 01/2017:0309.
- 4. Maziarz M, Rainville P, Tran Pham. Development of a Robust Method for Analysis of Aspirin and Related Substances Using a Statistical Software and Quality-by-Design Approach. Waters Application Note 720007177EN https://www.waters.com/nextgen/us/en/library/application-notes/2021/development-of-a-robust-method-for-analysis-of-aspirin-and-related-substances-using-a-statistical-software-and-quality-by-design-approach.html . 2021.
- 5. Waters Columns Calculator.

https://www.waters.com/waters/support.htm?lid=134891632&lcid=134891631&type=DWNL < https://www.waters.com/waters/support.htm?lid=134891632&lcid=134891631&type=DWNL> .

6. USF	Monograph for	Aspirin Tablets.	United States	Pharmacopeia	USP	43-NF 38.	official 1 May	/ 2020.
--------	---------------	------------------	---------------	--------------	-----	-----------	----------------	---------

Featured Products

Alliance HPLC System https://www.waters.com/534293

2998 Photodiode Array (PDA) Detector https://www.waters.com/1001362

Empower Chromatography Data System https://www.waters.com/10190669

720007258, June 2021

© 2021 Waters Corporation. All Rights Reserved.